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f mercury, in the pres<ncs

-

When a sphere is released in z tznk o

nzgnetic fiel \ahgned with the direction of grevity,

*he sphere i: ohwerved, for some values of the npplied magretic fild,
: ’

tc rire in = (steady 1'~-=,11cal motlcn. A thesry is presented which desc r%%:“

tuis effect. The mzin results are relaticnships between theidrag_ﬂ\‘vn tte

the wave length of the helix, znd the strerngth of the zpplisd

sphere,

rmignetic field: these relztions must be vatisfied if 2 stsady mation

roemrs. {t iz believed that this calculzticn is a new applicafion of the

theory of hydredynamic —,1b111ty of parallel flew.
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I. Intrcduction

For viscous Reynolds numbers, Re { = U D/2v, U = verucesl

velocity of the sphere, D = sphere diametsr, v = kirematic vizersits’,

greater than 10, a gphere rising (or fzlling) in zr. incompre:

L

fluid, does not rise in a straight line as infuiion bzsed o zvmme?
would suggest. Rather the motion is oscillat ry. The devisiers 1z m
a strzight path are smaller the larger the railc of sphere dan-iiv 40

{ .
fluid density. It has been observed () thzt = refier Izrge msgretic

field stabilizes these oscillations, and thz* the sphare ri-ex inos o *ond s

[

helical path. This paper presents a thecry which dsscritss s m
The use of a small disturbance thecry *c¢ describte this moiin
is.justified provided the steady vertical velocizy of the sphers 1o much
greatsr than the horizontal velocity, V, {V/U <<1). The resuli: of
(2} ‘o SR :
pazrzllel fiow stability calculations {(r=ferercs 2% iz herazi<or dern s
{1}*wil]l be used. This is appropriate beczuse, if the muignetic 11214 o
-~ < .
extenas T (53 SR AR08

sufficiently large, the wake of the sphere

infinity. The sphere is located in the cenier cf 2 w2ke extevding i

by

[

upstream to downstream infinity. The stability czleulati-n grneorss

(6)

vizcesity; it is known that'™ ' the unstable mods of an exicvmmetric vl

little changed by viscous effects provided ths Rernolds rumber
g Yy P :

vt
%
I

it i= 2s3umed that the unstable mcde is unchzngsd bv the preszr 02
sphere. Near the sphere, this is certainly wrorg. Fut fhe hellcs! m in
has = characteristic size of many sphere cdlzm=is15, 2rd % e-ms 100 -

sonzble to describe this large scale mcfion without <=birg irs cocour - she

details of the flow near the sphere.
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The basic physical assumpticn is the fcliswing: in “he prezere
cf a large magnetic field, the wake of a free rising sphere w1li L=
nearly aligned with the direction of the magnetic fieid. This me=r-
that the axial wave number, a, of the disturbznce iz very smsll
{a =7 D/\; the disturbance varies in the vertical dirsction z=z
exp (i2mz/N)), i.e., the wake is nearly ztraight. Trs form 2.
disturbance is taken to be the limit, as a =~ 0, =7 ¢he "telicsl 1r b
meode of an axisymmetric wake. The sphere mcvzs with the 1zl

horizontal velocity of the disturbance. The forcs due t¢ the doonirbs- s
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pressure on the sphere is composed of twe paris. = “hru

by the drag component due to the transverse vel . clty, z2nd = IFbaisr can

by the radial acceleration of the sphere.
Section II describes the steady flow cver = sphere ir the 1210

of a large magnetic field. Section III gives the raisvort ro it 7

i
(23

disturbance theory as presented in {I}. Sectitn [V precer® the ou 00

describing the helical motion of the sphere.

II. The Steady Motion

Consider a sphere rising verticzlly in ar ircomprez=ibie covanosir

fluid due to the action of buoyancy. The magnetic Reyn<léds rumbers - f

the motion, Rm, (=p o U D/2, p = magnetic permeszbility
cenductivity) is very small. This mezans that the currers. rduc-3
the motion are insufficient to change apprecizlhic “hs sprpaied magri
field, B.
The ratio of magnetic to inertia forcas iz
Do B?

5= zou I
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where p is the fluid density. We assume that S is of crder one cr lurp-r.
In this case the ratio of Alfven speed to zphere velncity, W&/Rm, 1o 21-
greater than one. The viscous Reynolds number iz large {Re 2>1.

If the Hartman number, NS Re , is greater than Re, $re zaympttic
expansion for the flow over the body is known. 1Itis believed ther = ciralisr
flow occurs when this unequality is not met, providea the izrowar
number is large. In any case, there iz an upsziream walke bac.u
NS/Rm >>1.

For NS Re >> Re, the flow over the sphere cormslsta o1 2 o lurny
of still fluid extending to infinity upstream and dowrnutrezm i Sfe sple re
{as NS Re — ®). The column is a cylinder whese generator is he » ja=© r

3,4,5

of the sphere If N S Re is not greater than Re, it is chgsryved

experimentally that the wake upstream has a firnite length lorger i S
is larger). 7 That is, the still cclumn of fluid has 2z lengih which tnore-z:-.
as S increases. Such a modification may describs the fiow down ¢
order one.
The vertical velocity of the sphere is deftsrmired biv b zloncirg
1 » wD? _ . .
the effects of drag, z p U B CD’ and buovancy, giving, Iir

V/U <<1,

21D
U=J—;—% (1 - ps/p) 2t

III . Stability Theory

It is convenient to introduce nondimenzionzl quartiiies a% thix

pcint. Non-dimensionalize lengths with D/2, velocities with fha versicsl

velocity of the sphere. The pressure is nondimensionzlized with -5
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and the electric field with UB. The nondimensicnzl laborztory
coordinate system is z positive upward, r the cylinder radiu=, =nd
® the azimuthal angle. In these coordinates, the flow over the

sphere described in the previous section, for S large, takes the form

_ 1, r <1 iae
v = {o, r>1 !

In (I) it is shown that a parallel flow described bv {3} iz alray=

unstable, however large S. From (I) the nocndimensicral pre=zure

and the electric field potential have the form

p = Real part of { P(r) elf e (Z-Ct)} =y
i0 ie{z-ct) .
® = Real part of {@ (r) eleela\ C‘)} [
The shape of the mode is a helix as the curves on which r = corzt,

az + 6 = const, are helixes. From (I), as o« —— 0, ¢ beccmes=:
cTrtr
From (I), P(r), for r <1 is given by

P(r)=A11 (Q'r'\/ 1+ S ), ,\17‘.
ia(1-0).
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where [} is the modified Bessel function of the firgt kirnd, of crder

cne. For small o and S at least order one, Plr) beccmes

aS

= (1<) )
P(r) = Ar T ()

From (I), & (r), for r <1, is given by
® (r})=BI) (ar '\/1-]- S ) T3

ia {1-c)

where B is linearly related to A. For a small, this becomes

3(r)= - 2 (1-20) = /ﬂ%) . 16

The radial velocity of the disturbance is given by the rzdi:

b

momentum equation:
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u = Real part of {S+ Ta(1=c) ,_ I3 =

In view of 8 and 10, this becomes

3 / 10 ialz-ciy !
u, = Real part of{ 2A-l) ‘*‘_(;l—s_c“} 5*8 pt=C th »o112n
AR »;

du
For a -0, the term ——B—-—ZE in the continuity equaticn may ke Ign . rsd.

Hence the perturbation velocity in the 6 directicn may be fourd b o the

centinuity equation when the radial velocity is known. Thiz gives
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_ -i 2A (c-1) [ @8 18 alz-cti |
Ug = Real part of{ S TT-C) e e k

4

{133
In the next section, equations 6, 8, 12, arnd 13 are used to reliste

the force on the sphere to its trajectory.

IV. The Helical Motion

EEoY
derl

=B

The results of the previous section can ke summsrize

dimensional form as follows, for a — o:

ur=UEcos 6 ‘14
ug = - UE sin 6 (15
p = p U? SE Trj- (-cos 6 + sin 9) it

The requirement that the sphere move with the heorizontal dis‘urtancs
velocity in the wake, i.e., the wake is attached to the sphere, implies
(from 14, 15) that the sphere is moving in the 8 = 0 directicn with

velocity

The force on the sphere due to its horizcntal mction s
r — TR
F = \' p{n dA) fixl

where the integration is over the surface of the sphere.
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The force in the @ = 0 direction is {®,pare spherical pclar angles)

2T T

2
—é—- p V% ( %— ) SE S' S sin? Ocos?@ =in Od Od ¢
0 0

which gives a thrust

D2
4

1

T=5

25 .
pU% () (5 E 16

Likewise, there isa lift force in the 0= %1 direction cf

1 D? 2S .
L=—ag pU () ( 5-)E 120)

Provided the radial acceleration is sufficiently small, {(i.e. of R is the
radius of the helical path of the sphere, D/R <X.1), the force= cn the
sphere as it moves in a helical path are given by 22 and 23.

To have a steady motion, the thrust must equal the hcrizontil

component of drag. For V/U << 1, this is~

T =— p U2 (I2—) Cp (V/U)

which can be written as

= 2 91
CD - —3- S ‘e\::]t
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Let the apparent mass of the sphere in the horizontal direction

3
Kp 12— (22)

For steady motion, the mass of the sphere {density ps) plus the

apparent mass times the radial acceleration must equal the lift:

which can be written as

_2ED ,Ps
R= 5= (5—+K) (23)
The wave length, A, for the helical path cf the sphere is the time for

one revolution times the vertical velccity. From 26,

+ K) {24)

Equations 21 and 24 are the principal results of this paper. Eguaticn

21 forms the basis for a possible experimental test of the theory.
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